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Abstract We investigate transverse electromagnetic waves propagating in a plasma influ-
enced by the gravitational field of the Reissner–Nordström black hole. Applying 3+1 space-
time split we reformulate the relativistic two-fluid equations to take account of gravitational
effects due to the event horizon and describe the set of simultaneous linear equations for
the perturbations. Using a local approximation we investigate the one-dimensional radial
propagation of Alfvén and high frequency electromagnetic waves. We derive the dispersion
relation for these waves and solve it for the wave number k numerically.

Keywords Two fluid plasma · Alfvén and high frequency electromagnetic waves · Event
horizon · Charged black hole

1 Introduction

In recent years there has been a renewed interest in investigating plasmas in the black hole
environment. A successful study of the waves and emissions from plasmas falling into a
black hole will be of great value in aiding the observational identification of black hole
candidates.

A covariant formulation of the theory based on the fluid equations in curved spacetime
has so far proved unproductive because of the curvature of four-dimensional spacetime in
the region surrounding a black hole.

Thorne, Price, and Macdonald (TPM) [1–4] developed a method of a 3 + 1 formula-
tion of general relativity in which the electromagnetic equations and the plasma physics at
least look somewhat similar to the usual formulations in flat spacetime while taking accu-
rate account of general relativistic effects such as curvature. In the TPM formulation, work
connected with black holes has been facilitated by replacing the hole’s event horizon with a
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membrane endowed with electric charge, electrical conductivity, and finite temperature and
entropy. The membrane paradigm is mathematically equivalent to the standard, full general
relativistic theory of black holes so far as physics outside the event horizon is concerned.
But the formulation of all physics in this region turns out to be very much simpler than it
would be using the standard covariant approach of general relativity.

Zheng [5, 6] exploited this approach, considering ideal magnetohydrodynamics (MHD)
waves near the Kerr black hole, to account for the effects of the hole’s angular momentum,
ignoring the effects due to the black hole horizon. Some other authors [7–9] used the 3 + 1
formulation to investigate some properties of wave propagation in the Friedmann universe.

Actually the 3 + 1 approach was originally developed in 1962 by Arnowitt, Deser, and
Misner [10] to study the quantization of the gravitational field. Since then, their formulation
has most been applied in studying numerical relativity [11]. TPM extended the 3 + 1 for-
malism to include electromagnetism and applied it to study electromagnetic effects near the
Kerr black hole.

Recently, Buzzi, Hines, and Treumann (BHT) [12, 13], using the 3 + 1 formalism, de-
scribed a general relativistic version of two-fluid formulation of plasma physics, developed
a linearized treatment of plasma waves in analogy with the special relativistic formulation of
Sakai and Kawata (SK) [14], and applied it to investigate the nature of the waves (transverse
waves in [12], longitudinal waves in [13]) near the horizon of the Schwarzschild black hole.

In this paper we apply linearized two-fluid equations of BHT to investigate transverse
electromagnetic waves propagating in a plasma close to the Reissner–Nordström (RN) black
hole, which is the Schwarzschild black hole generalized with the charge parameters: electric
as well as magnetic monopole charges. The magnetic monopole hypothesis was propounded
by Dirac relatively long ago. The ingenious suggestion by Dirac that magnetic monopole
does exist was neglected due to the failure to detect such a particle. However, in recent years
the development of gauge theories has shed new light on it. In extreme case the RN black
hole is distinguished by its coldness (vanishing Hawking temperature) and its supersymme-
try. It occupies a special position among the solutions to Einstein or Einstein–Maxwell equa-
tions because of its complete stability with respect to both classical and quantum process
permitting its interpretation as a soliton [15, 16]. The extremal RN space is also special in
admitting supersymmetry in the contest of N = 2 supergravity [16–21]. Thus aspects of the
RN solution must be of interest in a broader contest. In view of these reasons, our study of
transverse wave propagation in relativistic two-fluid plasma in the environment close to the
event horizon of the RN black hole is interesting. The result we obtained reduces to that of
the Schwarzschild black hole [12] when the charge term vanishes.

This paper is organized as follows. In Sect. 2 we summarize the 3+1 formulation of gen-
eral relativity. In Sect. 3 we describe the nonlinear two-fluid equations expressing continuity
and conservation of energy and momentum. The two-fluids are coupled together through
Maxwell’s equations for the electromagnetic fields. For zero gravitational fields these equa-
tions reduce to the corresponding special relativistic expressions. In Sect. 4 we restrict one-
dimensional wave propagation in the radial z (Rindler coordinate system) direction, and
linearize the equations for wave propagation in Sect. 5 by giving a small perturbation to
fields and fluid parameters. We express the derivatives of the unperturbed quantities with
respect to z. In Sect. 6 we discuss the local, or mean-field, approximation used to obtain nu-
merical solutions for the wave dispersion relations. We describe the dispersion relation for
the transverse waves in Sect. 7, and give the numerical procedure for determining the roots
of the dispersion relation in Sect. 8. In Sect. 9 we present the numerical solutions for the
wave number k. Finally, in Sect. 10 we present our remarks. We use units G = c = kB = 1.
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2 3 + 1 Spacetime Formalism

The 3 + 1 formulation of general relativity developed by TPM [1–4] is based on the concept
of selecting a preferred set of spacelike hypersurfaces which form the level surfaces of a
congruence of timelike curves. A particular set of these hypersurfaces constitutes a time
slicing of spacetime. The hypersurfaces considered here are of constant universal time t . In
this section we apply TPM formulation to split the Reissner–Nordström spacetime which
has the metric

ds2 = gμνdxμdxν = −�2dt2 + 1

�2
dr2 + r2(dθ2 + sin2 θdϕ2),

�2 = 1 − 2M

r
+ q2

r2
, q2 = q2

e + q2
m (1)

together with a vector potential with nonvanishing components: At = qe/r , Aϕ = −qmcosθ .
Here, M is the mass, qe the electric charge, and qm the magnetic charge of the black hole.
The components xμ denote spacetime coordinates and μ, ν = 0,1,2,3. The spacetime (1)
has a curvature singularity at r = 0 as for Schwarzschild, but in addition has two horizons
where gtt vanishes:

r± = M ±
√

M2 − q2. (2)

There is an event horizon at r = r+ and an inner (Cauchy) horizon at r = r−. For q < M the
singularity at r = 0 is hidden behind these horizons, while for q > M there exists no real
root of (2) and the spacetime has a naked singularity.

The case M = q gives the extremal RN black hole spacetime, which has special prop-
erties. At the classical level, this spacetime is just on the verge of developing a naked sin-
gularity. For q = 0, the extremal spacetime is just the flat space vacuum. Even for non-zero
q , the extremal spacetime can be thought of as the vacuum in the charge q sector of the
theory [22]. The extremal spacetime is also singled out in the context of supergravity, in
that it is the solution of the supergravity equations of motion which preserve half of the
supersymmetries [23].

A charged black hole preferentially radiates away its charge, the amount of which de-
pends on the charge to mass ratio. If this ratio is sufficiently small, most of the radiation
is in the form of neutral particles and q is essentially constant. This is likely to be true for
magnetically charged black holes. In this case, the black hole evolves toward its extremal
limit. The Hawking temperature [24]

TH =
√

M2 − q2

2π(M + √
M2 − q2)

vanishes as q → M , and hence, extremal charged black holes may be quantum mechanically
stable. There is a possibility that extremal quantum black holes can bifurcate [25], but this is
consistent with ideas of cosmic censorship. As the black hole approaches the extremal limit,
the Hawking radiation turns off. It does not continue to radiate to a naked singularity.

An absolute three-dimensional space defined by the hypersurfaces of constant universal
time t is described by the metric

ds2 = gij dxidxj = 1

�2
dr2 + r2(dθ2 + sin2θdϕ2). (3)
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The indices i, j range over 1,2,3 and refer to coordinates in absolute space. The fiducial
observers (FIDOs), i.e. the observers remaining at rest with respect to this absolute space,
measure their proper time τ using clocks that they carry with them and make local measure-
ments of physical quantities. Then all their measured quantities are defined as FIDO locally
measured quantities and all rates measured by them are measured using FIDO proper time.
The FIDOs use a local Cartesian coordinate system with unit basis vectors tangent to the
coordinate lines

er̂ = �
∂

∂r
, eθ̂ = 1

r

∂

∂θ
, eϕ̂ = 1

r sin θ

∂

∂ϕ
. (4)

For a spacetime viewpoint rather than a 3 + 1 split of spacetime, the set of orthonormal
vectors also includes the basis vector for the time coordinate given by

e0̂ = d

dτ
= 1

α

∂

∂t
, (5)

where α is the lapse function (or redshift factor) defined by

α(r) ≡ dτ

dt
= 1

r
(r − r+)

1
2 (r − r−)

1
2 . (6)

The gravitational acceleration felt by a FIDO is given by [1–4]

a = −∇ lnα = − 1

α

(
M

r2
− q2

r3

)
er̂ , (7)

while the rate of change of any scalar physical quantity or any three-dimensional vector or
tensor, as measured by a FIDO, is defined by the convective derivative

D

Dτ
≡

(
1

α

∂

∂t
+ v · ∇

)
, (8)

v being the velocity of a fluid as measured locally by a FIDO.

3 Two Fluid Equations in 3 + 1 Formalism

In this section we describe the equations for continuity, the conservation of energy and mo-
mentum, and Maxwell’s equations in 3 + 1 formalism. We consider two-component plasma
such as electron-positron plasma or electron-ion plasma. In the 3+1 notation, the continuity
equation for each of the fluid species is

∂

∂t
(γsns) + ∇ · (αγsnsvs) = 0, (9)

where s is 1 for electrons and 2 for positrons (or ions). For a perfect relativistic fluid of
species s in three-dimensions, the energy density εs , the momentum density Ss , and stress-
energy tensor W

jk
s are given by

εs = γ 2
s (εs + Psv2

s ), Ss = γ 2
s (εs + Ps)vs , W ik

s = γ 2
s (εs + Ps)v

j
s v

k
s + Psg

jk, (10)
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where vs is the fluid velocity, ns is the number density, Ps is the pressure, and εs is the total
energy density defined by

εs = msns + Ps/(γg − 1), (11)

where the gas constant γg is 4/3 for T → ∞ and 5/3 for T → 0.
The ion temperature profile is closely adiabatic and it approaches 1012 K near the horizon

[26]. Far from the (event) horizon electron (positron) temperatures are essentially equal to
the ion temperatures, but closer to the horizon the electrons are progressively cooled to about
108–109 K by mechanisms like multiple Compton scattering and synchrotron radiation.

Using the conservation of entropy, the equation of state can be expressed by

D

Dτ

(
Ps

n
γg
s

)
, (12)

where D/Dτ = (1/α)∂/∂t + vs · ∇ . The full equation of state for a relativistic fluid, as
measured in the fluid’s rest frame, is as follows [27, 28]:

εs = msns + msns

[
Ps

msns

− iH(1)′
2 (imsns/Ps)

iH(1)

2 (imsns/Ps)

]
, (13)

where the H
(1)

2 (x) are Hankel functions.
The quantities of (10) in the electromagnetic field are expressed in the following form:

εs = 1

8π
(E2 + B2), Ss = 1

4π
E × B,

(14)

Wjk
s = 1

8π
(E2 + B2)gjk − 1

4π
(EjEk + BjBk).

The conservation of energy and momentum equations are written, respectively, as follows
[1–3]:

1

α

∂

∂t
εs = −∇ · Ss + 2a · Ss , (15)

1

α

∂

∂t
Ss = εsa − 1

α
∇ · (α ↔

Ws). (16)

When the two-fluid plasma couples to the electromagnetic fields, Maxwell’s equations take
the following form:

∇ · B = 0, (17)

∇ · E = 4πσ, (18)

∂B
∂t

= −∇ × (αE), (19)

∂E
∂t

= ∇ × (αB) − 4παJ, (20)

where the charge and current densities are defined by

σ =
∑

s

γsqsns, J =
∑

s

γsqsnsvs . (21)
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Using (11) and (17–20), the energy and momentum conservation equations (15) and (16)
can be rewritten for each species s in the form

1

α

∂

∂t
Ps − 1

α

∂

∂t
[γ 2

s (εs + Ps)] − ∇ · [γ 2
s (εs + Ps)vs]

+γsqsnsE · vs + 2γ 2
s (εs + Ps)a · vs = 0, (22)

γ 2
s (εs + Ps)

(
1

α

∂

∂t
+ vs · ∇

)
vs + ∇Ps − γsqsns(E + vs × B)

+vs

(
γsqsnsE · vs + 1

α

∂

∂t
Ps

)
+ γ 2

s (εs + Ps)[vs(vs · a) − a] = 0. (23)

Although these equations are valid in a FIDO frame, they reduce for α = 1 to the corre-
sponding special relativistic equations as given by SK [14] which are valid in a frame in
which both fluids are at rest. The transformation from the FIDO frame to the comoving
(fluid) frame involves a boost velocity, which is simply the freefall velocity onto the black
hole, given by

vff = (1 − α2)
1
2 . (24)

Then the relativistic Lorentz factor γboost ≡ (1 − v2
ff)

−1/2 = 1/α.
The Rindler coordinate system, in which space is locally Cartesian, provides a good

approximation to the Reissner–Nordström metric near the event horizon in the form

ds2 = −�2dt2 + dx2 + dy2 + dz2, (25)

where

x = r+
(

θ − π

2

)
, y = r+ϕ, z = 2r+�2. (26)

The standard lapse function in Rindler coordinates becomes α = z/2r+, where r+ is the
event horizon of the black hole.

4 One-Dimensional Radial Wave Propagation

We consider one-dimensional wave propagation in the radial z direction and introduce the
complex variables

vsz(z, t) = us(z, t), vs(z, t) = vsx(z, t) + ivsy(z, t),
(27)

B(z, t) = Bx(z, t) + iBy(z, t), E(z, t) = Ex(z, t) + iEy(z, t).

Then

vsxBy − vsyBx = i

2
(vsB

∗ − v∗
s B),

(28)

vsxEy − vsyEx = i

2
(vsE

∗ − v∗
s E),

where the ∗ denotes the complex conjugate. The continuity equation (9) takes the form

∂

∂t
(γsns) + ∂

∂z
(αγsnsus) = 0, (29)
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while Poisson’s equation (18) becomes

∂Ez

∂z
= 4π(q1n1γ1 + q2n2γ2). (30)

The ex̂ and eŷ components of (19) and (20) give

1

α

∂B

∂t
= −i

(
∂

∂z
− a

)
E, (31)

i
∂E

∂t
= −α

(
∂

∂z
− a

)
B − i4πeα(γ2n2v2 − γ1n1v1). (32)

Differentiating (32) with respect to t and using (31), we obtain
(

α2 ∂2

∂z2
+ 3α

2r+
∂

∂z
− ∂2

∂t2
+ 1

(2r+)2

)
E = 4πeα

∂

∂t
(n2γ2v2 − n1γ1v1). (33)

From the ex̂ and eŷ components of (23) the transverse component of the momentum conser-
vation equation is

ρs

Dvs

Dτ
= qsnsγs(E − ivsBz + iusB) − usvsρsa − vs

(
qsnsγsE · vs + 1

α

∂Ps

∂t

)
, (34)

where

E · vs = 1

2
(Ev∗

s + E∗vs) + Ezus

and ρs is the total energy density defined by

ρs = γ 2
s (εs + Ps) = γ 2

s (msns + �gPs) (35)

with �g = γg/(γg − 1).

5 Linearization

We linearize the equations derived in the preceding section by perturbation method. We
introduce the quantities

us(z, t) = u0s(z) + δus(z, t), vs(z, t) = δvs(z, t),

ns(z, t) = n0s(z) + δns(z, t), Ps(z, t) = P0s(z) + δPs(z, t),
(36)

ρs(z, t) = ρ0s(z) + δρs(z, t), E(z, t) = δE(z, t),

Bz(z, t) = B0(z) + δBz(z, t), B(z, t) = δB(z, t).

Here, magnetic field has been chosen to lie along the radial eẑ direction. The relativistic
Lorentz factor is also linearized such that

γs = γ0s + δγs, where γ0s = (
1 − u2

0s

)− 1
2 , δγs = γ 3

0su0s · δus . (37)

The unperturbed radial velocity near the event horizon for each species as measured by a
FIDO along eẑ is assumed to be the freefall velocity so that

u0s(z) = vff(z) = [1 − α2(z)] 1
2 . (38)
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Fig. 1 Top: Real part of Alfvén
mode for the electron-positron
plasma. Bottom: Imaginary part
of Alfvén damped mode

From the continuity equation (29), it follows that

r2αγ0sn0su0s = const. = r2
+α+γ+n+u+,

where the values with a subscript + are the limiting values at the event horizon. The freefall
velocity at the horizon becomes unity so that u+ = 1. Since u0s = vff, γ0s = 1/α; and hence
αγ0s = α+γ+ = 1. Also, because vff = ζ(r+/r)1/2, the number density for each species can
be written as follows:

n0s(z) = 1

ζ 4
n+sv

3
ff(z), (39)

where

ζ =
[

1 + r−
r+

(
1 − r+

r

)] 1
2

. (40)

The equation of state (12) and (40) lead to write the unperturbed pressure, in terms of the
freefall velocity, as follows:

P0s(z) = P+sv
3γg

ff (z). (41)
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Fig. 2 Top: Real part of Alfvén
mode for the electron-positron
plasma. Bottom: Imaginary part
of Alfvén growth mode

Since P0s = kBn0sT0s , then with kB = 1, the temperature profile is

T0s = T+sv
3(γg−1)

ff (z). (42)

The unperturbed magnetic field is purely in the radial direction. It does not experience effects
of spatial curvature. From the flux conservation ∇ · B0 = 0 it follows that

r2B0(r) = const.

from which one obtains the unperturbed magnetic field, in terms of the freefall velocity, in
the form

B0(z) = B+v4
ff(z), (43)

where vff = [1 − α2(z)]1/2. Since

dvff

dz
= − α

2r+
1

vff
, (44)

we have

du0s

dz
= − α

2r+
1

vff
,

dB0

dz
= − 4α

2r+
B0

v2
ff

,
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Fig. 3 Top: Real part of Alfvén
mode for the electron-positron
plasma. Bottom: Imaginary part
of Alfvén damped mode

(45)
dn0s

dz
= − 3α

2r+
n0s

v2
ff

,
dP0s

dz
= − 3α

2r+
γgP0s

v2
ff

.

When the linearized variables from (36) and (37) are substituted into the continuity equa-
tion and products of perturbation terms are neglected, it follows that

γ0s

(
∂

∂t
+ u0sα

∂

∂z
+ u0s

2r+
+ γ 2

0sα
du0s

dz

)
δns +

(
α

∂

∂z
+ 1

2r+

)
(n0sγ0su0s)

+n0sγ
3
0s

[
u0s

∂

∂t
+ α

∂

∂z
+ 1

2r+
+ α

(
1

n0s

dn0s

dz
+ 3γ 2

0su0s

du0s

dz

)]
δus = 0. (46)

Doing the same we obtain from the conservation of entropy, (12),

δPs = γgP0s

n0s

δns, (47)
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Fig. 4 Top: Real part of Alfvén
mode for the electron-positron
plasma. Bottom: Imaginary part
of Alfvén growth mode

and from the total energy density, (35),

δρs = ρ0s

n0s

(
1 + γ 2

0sγgP0s

ρ0s

)
δns + 2u0sγ

2
0sρ0sδus, (48)

where ρ0s = γ 2
0s(msn0s + �gP0s). When the transverse part of the momentum conservation

equation is linearized, differentiated with respect to t , and substituted from (31), it gives

(
αu0s

∂

∂z
+ ∂

∂t
− u0s

2r+
+ iαqsγ0sn0sB0

ρ0s

)
∂δvs

∂t

− αqsγ0sn0s

ρ0s

(
αu0s

∂

∂z
+ ∂

∂t
+ u0s

2r+

)
δE = 0. (49)

Poisson’s equation (30) and (33) are linearized to obtain, respectively,

∂δEz

∂z
= 4πe(n02γ02 − n01γ01) + 4πe(γ02δn2 − γ01δn1)

+ 4πe(n02u02γ
3
02δu2 − n01u01γ

3
01δu1), (50)
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Fig. 5 Top: Real part of Alfvén
mode for the electron-ion plasma.
Bottom: Imaginary part of Alfvén
damping and growth mode

(
α2 ∂2

∂z2
+ 3α

2r+
∂

∂z
− ∂2

∂t2
+ 1

(2r+)2

)
δE = 4πeα

(
n02γ02

∂δv2

∂t
− n01γ01

∂δv1

∂t

)
. (51)

6 Local Approximation

We restrict our consideration to effects on a local scale for which the distance from the
horizon does not vary significantly. We use a local (or mean-field) approximation for the
lapse function and hence for the equilibrium fields and fluid quantities. If the plasma is
situated relatively close to the horizon, α2 	 1, then a relatively small change in distance z

will make a significant difference to the magnitude of α. Hence it is important to choose a
sufficiently small range in z so that α does not vary much.

We consider thin layers in the eẑ direction, each layer with its own α0, where α0 is some
mean value of α within a particular layer. Then a more complete picture can be built up by
considering a large number of layers within a chosen range of α0 values.



784 Int J Theor Phys (2008) 47: 772–796

Fig. 6 Top: Real part of Alfvén
mode for the electron-ion plasma.
Bottom: Imaginary part of growth
and damped Alfvén mode

The local approximation imposes the restriction that the wavelength must be smaller in
magnitude than the scale of the gradient of the lapse function α, i.e.,

λ <

(
∂α

∂z

)−1

= 2r+ 
 η 5.896 × 105 cm,

or, equivalently,

k >
2π

2r+

 η−11.067 × 10−5 cm−1, 0.5 ≤ η ≤ 1,

for a black hole of mass ∼1 M. The value for η = 0.5 corresponds to the extremal black
hole and that for η = 1 to Schwarzschild black hole.

The drawback of the hydrodynamical approach is that it is essentially a bulk, fluid ap-
proach. So the microscopic behavior of the two-fluid plasma is treated in a somewhat ap-
proximate manner via the equation of state. Then the results are really only strictly valid
in the long wavelength limit. However, the restriction, imposed by the local approximation,
on the wavelength is not too severe and permits the consideration of intermediate to long
wavelengths so that the small k limit is still valid.
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Fig. 7 Top: Real part of Alfvén
mode for the electron-ion plasma.
Bottom: Imaginary part of
damped mode

In the local approximation for α, α 
 α0 is valid within a particular layer. Hence, the
unperturbed fields and fluid quantities and their derivatives, which are functions of α, take
on their corresponding “mean-field” values for a given α0. Then the coefficients in (46),
(49), and (50) are constants within each layer with respect to α (and therefore z as well).
So it is possible to Fourier transform the equations with respect to z, using plane-wave-type
solutions for the perturbations of the form ∼ ei(kz−ωt) for each α0 layer.

7 Dispersion Relation

When Fourier transformed, (49) and (51) become

δE = i4πeα0ω(n02γ02δv2 − n01γ01δv1)

α0k(α0k − i3/2r+) − ω2 − 1/(2r+)2
, (52)

ω

(
α0ku0s − ω + iu0s

2r+
+ α0qsγ0sn0sB0

ρ0s

)
δvs



786 Int J Theor Phys (2008) 47: 772–796

Fig. 8 Top: Real part of Alfvén
mode for the electron-ion plasma.
Bottom: Imaginary part of Alfvén
growth mode

− iα0
qsγ0sn0s

ρ0s

(
α0ku0s − ω − iu0s

2r+

)
δE = 0. (53)

Then the dispersion relation for the transverse electromagnetic wave modes may be put in
the form

[
K±

(
K± ± i

2r+

)
− ω2 + 1

(2r+)2

]

= α2
0

{
ω2

p1(ω − u01K±)

(u01K∓ − ω − α0ωc1)
+ ω2

p2(ω − u02K±)

(u02K∓ − ω + α0ωc2)

}
, (54)

for either the electron-positron or electron-ion plasma. Here, ωcs = eγ0sn0sB0/ρ0s and
K± = α0k ± i/2r+. The cyclotron frequency ωcs , as well as the plasma frequency, is frame
independent. Although the fluid quantities are measured in the fluid frame, the field B0 is
measured in the FIDO frame. Hence, the factors of γ0s do not cancel out explicitly. The
transformation B0 → γ0sB0 boosts the fluid frame for either fluid and thereby cancels the
γ0s factors. The + and − denote the left (L) and right (R) modes, respectively. The disper-
sion relation for the L mode is obtained by taking the complex conjugate of the dispersion
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Fig. 9 Top: Real part of Alfvén
mode for the electron-ion plasma.
Bottom: Imaginary part of Alfvén
growth mode

relation for the R mode. The two modes have the same dispersion relation in the special
relativistic case.

8 Numerical Solution Modes

The dispersion relations (54) are complicated enough, even in the simplest cases for the
electron-positron plasma where both species are assumed to have the same equilibrium pa-
rameters, and an analytical solution is cumbersome and unprofitable. We solve numerically
the dispersion relation in order to determine all the physically meaningful modes for the
transverse waves. We put the equations in the form of a matrix equation as follows:

(A − kI)X = 0. (55)

The eigenvalue is chosen to be the wave number k, the eigenvector X is given by the relevant
set of perturbations, and I is the identity matrix.

We need to write the perturbation equations in an appropriate form. We introduce the
following set of dimensionless variables:

ω̃ = ω

α0ω∗
, k̃ = kc

ω∗
, k+ = 1

2r+ω∗
,
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Fig. 10 Top: Real part of high
frequency transverse mode for
the electron-positron plasma.
Bottom: Imaginary part of
damping and growth mode

δũs = δus

u0s

, ṽs = δvs

u0s

, δñs = δns

n0s

, (56)

δB̃ = δB

B0
, Ẽ = δE

B0
, δẼz = δEz

B0
.

For an electron-positron plasma, ωp1 = ωp2 and ωc1 = ωc2; hence, ω∗ is defined as

ω∗ =
{

ωc, Alfvén modes,

(2ω2
p + ω2

c )
1/2, high frequency modes,

(57)

where ωp = √
ωp1ωp2 and ωc = √

ωc1ωc2. However, for the case of an electron-ion plasma,
the plasma frequency and the cyclotron frequency are different for each fluid, and so the
choice of ω∗ is a more complicated matter. For simplicity, we assume that

ω∗ =
{

1√
2
(ω2

c1 + ω2
c2)

1/2, Alfvén modes,

(ω2
∗1 + ω2

∗2)
1/2, high frequency modes,

(58)

where ω2∗s = (2ω2
ps + ω2

cs).
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Fig. 11 Top: Real part of high
frequency transverse mode for
the electron-positron plasma.
Bottom: Imaginary part of
damping and growth mode

The dimensionless eigenvector for the transverse set of equations is

X̃transverse =
⎡

⎢
⎣

δṽ1

δṽ2

δB̃

δẼ

⎤

⎥
⎦ . (59)

When (31) and (32) are linearized and Fourier transformed, they take the forms

(
k − i

2r+α0

)
δE + iω

α0
δB = 0, (60)

iω

α0
δE =

(
k − i

2r+α0

)
δB + 4πe(γ02n02δv2 − γ01n01δv1). (61)

Using (56), we write (53), (60), and (61) in the dimensionless form:

k̃δṽs =
(

ω̃

u0s

−
(

qs

e

)
ωcs

u0sω∗
− ik+

α0

)
δṽs

+
(

qs

e

)
ωcs

u0sω∗
δB̃ − i

(
qs

e

)
ωcs

u2
0sω∗

δẼ, (62)
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Fig. 12 Top: Real part of high
frequency transverse mode for
the electron-positron plasma.
Bottom: Imaginary part of
damped mode

k̃δẼ = −iω̃δB̃ + ik+
α0

δẼ, (63)

k̃δB̃ = u01

ω2
p1

ωc1ω∗
δṽ1 − u02

ω2
p2

ωc2ω∗
δṽ2 + ik+

α0
δB̃ + iω̃δẼ. (64)

These are the equations in the required form to be used as input to (55).

9 Results

We carried out the numerical analysis using the well known MATLAB. We chose ζ 2 = 1.05
and q2/M2 = 0.2. We have considered both the electron-positron plasma and the electron-
ion plasma. The limiting horizon values for the electron-positron plasma are taken to be

n+s = 1018 cm−3, T+s = 1010 K, B+ = 3 × 106 G, and γg = 4

3
. (65)

For the electron-ion plasma, the ions are essentially nonrelativistic, and the limiting horizon
values are chosen to be

n+1 = 1018 cm−3, T+1 = 1010 K, n+2 = 1015 cm−3, T+2 = 1012 K. (66)
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Fig. 13 Top: Real part of high
frequency transverse mode for
the electron-ion plasma. Bottom:
Imaginary part of growth mode

The equilibrium magnetic field has the same value as it has for the electron-positron case.
The gas constant and the mass and charge of the black hole have been chosen as follows:

γg = 4

3
, M = 5 M, q2 = 0.2 M2. (67)

9.1 Alfvén Modes

9.1.1 Electron-Positron Plasma

For the electron-positron plasma there are four Alfvén modes as shown in Figs. 1–4. The
Alfvén modes in the presence of the black hole’s gravitational field are interesting in that: al-
though the two modes, shown in Figs. 1 and 2, for electron-positron are respectively complex
conjugates of the modes, shown in Figs. 3 and 4, all the modes are different for electron-ion
plasma.

In the study by SK for the special relativistic case, only one purely real Alfvén mode
was found to exist for the ultrarelativistic electron-positron plasma. This is because both the
left and right circularly polarized modes were described by the same dispersion relation.
The Schwarzschild case, investigated by BHT, admits the similar Alfvén modes as those of



792 Int J Theor Phys (2008) 47: 772–796

Fig. 14 Top: Real part of high
frequency transverse mode for
the electron-ion plasma. Bottom:
Imaginary part of damping and
growth mode

ours. Here Im(k) > 0 corresponds to damping and Im(k) < 0 to growth. This is because the
convention we have used is eikz = ei[Re(k)+iIm(k)]z.

9.1.2 Electron-Ion Plasma

In this case four modes are seen to exist. The first two modes, shown in Figs. 5 and 6, are a
complex conjugate pair and are significantly damped and growing, respectively, whereas the
other two modes, shown in Figs. 7 and 8, demonstrate only marginal damping and growth,
respectively, and are equivalent to the electron-positron modes described earlier.

The differences in the magnitudes of the ωc1 and ωc2 for the first two modes apparently
lead to take the frequencies from their negative (and therefore unphysical) values for the
electron-positron case to positive physical values for the electron-ion case. These changes
are thus because of the difference in mass and density factors as between the positrons and
ions.

These four modes for electron-ion plasma are similar to those of BHT for the Schwarz-
schild case. It is evident that the growth and damping rates are independent of the frequency,
but depended only on the distance from the black hole horizon through α0.
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Fig. 15 Top: Real part of high
frequency transverse mode for
the electron-ion plasma. Bottom:
Imaginary part of damping and
growth mode

9.2 High Frequency Transverse Modes

9.2.1 Electron-Positron Plasma

In this case there exist four high frequency electromagnetic modes, as shown in Figs. 9–12.
Figure 9 shows a small amount of growth for lower frequency ω̃ → 1 and for all values
of α0.

The mode in Fig. 10 is damped for frequency ω̃ → 1 but shows growth for higher fre-
quencies ω̃ > 6. In special relativistic case, as was investigated by SK, there exists only one
purely high frequency mode for the ultrarelativistic electron-positron plasma.

Figure 11 is similar to Fig. 12, and is growth for all frequency ω̃ < 8, but damped for ω̃ >

8. These modes are similar to those of BHT for the Schwarzschild case. The dependence of
the growth and decay rates on frequency is clearly evident, unlike the corresponding Alfvén
modes.

9.2.2 Electron-Ion Plasma

Like the electron-positron plasma, the electron-ion plasma admits four high frequency
modes, of which two are, shown in Figs. 13 and 16, purely damped and growth, respectively.
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Fig. 16 Top: Real part of high
frequency transverse mode for
the electron-ion plasma. Bottom:
Imaginary part of damped mode

The other two modes, shown in Figs. 14 and 15, are both damping and growth, respectively.
Figure 14 is damped mode for all frequency ω̃ < 5, but shows growth for ω̃ > 5.

Figure 15 shows growth for all frequency ω̃ < 3, but damped for ω̃ > 3 close to the black
hole event horizon. This is because the solution is too close to a resonance frequency. Unlike
the first three, this mode is stable for all frequencies and at all distances from the horizon.
The dependence of the growth and decay rates on frequency is clearly evident, unlike the
corresponding Alfvén modes. These four modes are analogous to the three modes of BHT
for the Schwarzschild case.

10 Concluding Remarks

The main concern of this study has been exclusively the investigation, within the local
approximation, of Alfvén and high frequency transverse electromagnetic waves in a two-
dimensional plasma surrounding the Reissner–Nordström black hole.

We derive the dispersion relations for the Alfvén and high frequency electromagnetic
waves by using a local approximation and give their numerical solutions. In the limit of zero
gravity our results reduce to those in special relativity obtained by Sakai and Kawata [14].
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Unlike the SK work in special relativity, new modes (damped or growth) arise for the
Alfvén and high frequency electromagnetic waves because of the black hole’s gravitational
field. For the electron-positron plasma, the damping and growth rates are smaller in general,
by several orders of magnitude, compared with the real components of the wave number.
But there exist modes, for the electron-ion plasma, for which the damping and growth rates
are significant. This is true for the Alfvén waves in particular. For the Alfvén waves, the
damping and growth rates are obviously frequency independent, but are dependent on the
radial distance from the horizon as denoted by the mean value of the lapse function α0. This
is of course not the case for the high frequency waves. In that case the rate of damping or
growth is dependent on both frequency and radial distance from the horizon.

Damped modes demonstrate, at least in this approximation, that energy is being drained
from some of the waves by the gravitational field. The majority of the modes are growth
rates and that indicate that the gravitational field is feeding energy into the waves.

The presence of magnetic monopole charge in the RN hole and the characteristic of the
extremal RN hole draw attention of the physicists. In view of these reasons, our study of
transverse wave propagation in relativistic two-fluid plasma in the environment close to the
event horizon of the RN black hole is interesting. The result we obtained reduces to that of
the Schwarzschild black hole [12] when q = 0. Our result can be specialized for the extreme
RN hole by choosing M2 = q2. In a subsequent paper we shall study the longitudinal waves
together with the two-stream instability in the environment of the RN black hole. We shall
further extend our study to the Reissner–Nordström black hole spacetime generalized with
cosmological parameter. This type of extension may be interesting from the point of view
of an inflationary scenario of the early universe.
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